Sparse kernel machine regression for ordinal outcomes
نویسندگان
چکیده
منابع مشابه
Sparse Bayesian kernel logistic regression
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay’s evidence approximation. The model is re-parameterised such that an isotropic Gaussian prior over parameters in the kernel induced feature space is replaced by an isotropic Gaussian prior over the transformed parameters, facilitating a Bayesian analysis using stan...
متن کاملKernel Regression Based Machine Translation
We present a novel machine translation framework based on kernel regression techniques. In our model, the translation task is viewed as a string-to-string mapping, for which a regression type learning is employed with both the source and the target sentences embedded into their kernel induced feature spaces. We report the experiments on a French-English translation task showing encouraging resu...
متن کاملRegression Models for Ordinal Data: A Machine Learning Approach
In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi–class problems are really proble...
متن کاملSparse inverse kernel Gaussian Process regression
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...
متن کاملSparse Kernel Ridge Regression Using Backward Deletion
Based on the feature map principle, Sparse Kernel Ridge Regression (SKRR) model is proposed. SKRR obtains the sparseness by backward deletion feature selection procedure that recursively removes the feature with the smallest leave-one-out score until the stop criterion is satisfied. Besides good generalization performance, the most compelling property of SKRR is rather sparse, and moreover, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2014
ISSN: 0006-341X
DOI: 10.1111/biom.12223