Sparse kernel machine regression for ordinal outcomes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Bayesian kernel logistic regression

In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay’s evidence approximation. The model is re-parameterised such that an isotropic Gaussian prior over parameters in the kernel induced feature space is replaced by an isotropic Gaussian prior over the transformed parameters, facilitating a Bayesian analysis using stan...

متن کامل

Kernel Regression Based Machine Translation

We present a novel machine translation framework based on kernel regression techniques. In our model, the translation task is viewed as a string-to-string mapping, for which a regression type learning is employed with both the source and the target sentences embedded into their kernel induced feature spaces. We report the experiments on a French-English translation task showing encouraging resu...

متن کامل

Regression Models for Ordinal Data: A Machine Learning Approach

In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. The task of ordinal regression arises frequently in the social sciences and in information retrieval where human preferences play a major role. Also many multi–class problems are really proble...

متن کامل

Sparse inverse kernel Gaussian Process regression

Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. Gaussian Process regression is a popular technique for modeling the input-output relations of a set of variables under the assumption that the weight vector has a Gaussian prior. However, it is challenging to apply Gaussian Process regression to lar...

متن کامل

Sparse Kernel Ridge Regression Using Backward Deletion

Based on the feature map principle, Sparse Kernel Ridge Regression (SKRR) model is proposed. SKRR obtains the sparseness by backward deletion feature selection procedure that recursively removes the feature with the smallest leave-one-out score until the stop criterion is satisfied. Besides good generalization performance, the most compelling property of SKRR is rather sparse, and moreover, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2014

ISSN: 0006-341X

DOI: 10.1111/biom.12223